Colorado River Risk Study Phase III An Update for the 4 West Slope Basin Round Table Meeting Grand Junction, Colorado June 20, 2019 Disclaimer: The findings presented herein are for discussion purposes only, and do not represent the official position of any entity with respect to factual or legal matters concerning the Colorado River. All Results Presented herein are Preliminary and Subject to Change #### Disclaimer Part 2: - 1. All Models are Wrong, some are Useful George Box - 2. Any opinions expressed herein are my own - 3. Don't shoot the messenger - Originated from joint West Slope BRT discussions and reflection on DCP process - Funding via Colorado River District, Southwestern, West Slope BRTs (CWCB) - Principle 4 of the IBCC Conceptual Framework from the Colorado Water Plan: A collaborative program that protects against involuntary curtailment is needed for existing uses and some reasonable increment of future development in the Colorado River system, but it will not cover a new TMD. - Phase I completed Fall 2016; Phase II completed Fall 2018 - Takeaways thus far: - 1. Under current conditions and operating policies, the likelihood of reaching critical elevations or a compact deficit is low, but impacts could be significant - 2. Hydrology and amount of future growth in the Upper Basin are key drivers of risk - 3. It is not just a Lower Basin / Structural Deficit problem (hence the UB DCP plan) #### Lake Powell and the Colorado River Compact #### Upper Basin Objectives: - Avoid Compact Deficit which might lead to curtailment - 2. Protect Lake Powell (Elevation 3525' is threshold for Lower Elevation Balancing Tier. 3490' is minimum power pool) #### Risk Drivers: - Hydrology - Consumptive Use - Low Reservoir Storage Conditions #### Lake Powell Storage #### Lake Powell Storage ### What does Modeling tell us about Risk? Model analysis from Phase III of the Risk Study using the 1988-2015 Stress Test Hydrology indicates: - 1. The likelihood of Lake Powell Dropping below 3525' at some point in the next 25 years is ~ 39% (11 of 28 traces). - 2. The likelihood of the 10-year running average Lee Ferry volume dropping below 82.5 Maf is ~ 46% (13 of 28 traces) - 3. The likelihood of the 10-year running average Lee Ferry volume dropping below 75 Maf is $\sim 0\%$ * (0 of 28 traces) An increase in annual Upper Basin Consumptive Use averaging 11.5% (approximately 500 Kaf)** roughly doubles the risk of #1 and #2. *Note that previous Risk Study simulations and Reclamation runs have shown likelihoods greater than zero at the 75 Maf threshold (Model assumptions matter!) **The UCRC Demand Schedule anticipates reaching that level of use by ~2037. #### Pre-Emptive Water Management Options The recently approved Drought Contingency Plans (DCPs) provide a mechanism for protecting critical elevations at both Lake Powell and Lake Mead. The Upper Basin DCP has three components intended to reduce or eliminate the risk of reaching critically low Lake Powell levels: - 1. Cloud Seeding and Phreatophyte Control (Ongoing) - 2. Drought Operations of CRSP storage facilities (Subject to consultation between UB States and Reclamation) - 3. Exploration of voluntary and compensated Demand Management program, including use of 500,000 af water bank in one or more CRSP facilities If these (and possibly other) pre-emptive actions are insufficient to protect Lake Powell levels, and if as a result Lake Powell was unable to release sufficient water past Lee Ferry, a Compact Deficit could result. ## A Compact Deficit could result in Involuntary Curtailment #### Questions: - How much Colorado River water does the State of Colorado use? - How much of Colorado's depletions are pre-compact? - How is this volume split up across the west slope basins (including TMDs)? - How much post-compact use could be called out? - Where are those post-compact uses? - What are potential approaches to "Sharing the Pain"? | | Annual Depletions (acre-feet) | | | | | |-----------|-------------------------------|-----------|-----------|--|--| | Basin | Minimum | Average | Maximum | | | | Yampa | 173,547 | 196,982 | 215,193 | | | | White | 48,550 | 62,060 | 70,397 | | | | Colorado | 1,117,487 | 1,220,386 | 1,345,192 | | | | In-Basin | 650,887 | 669,397 | 692,333 | | | | TMDs | 466,600 | 550,989 | 652,859 | | | | Gunnison | 481,626 | 552,418 | 601,030 | | | | Southwest | 335,365 | 500,717 | 556,627 | | | | Total | 2,156,575 | 2,532,564 | 2,788,439 | | | ### Key Question: How Much Consumptive Use is Pre-Compact? - Boulder Canyon Project Act (6/25/1929): U.S. Congress approves Colorado River Compact, which was signed by 6 of the 7 basin states on November 24, 1922. - Article VIII of the 1922 Compact: "Present perfected rights to the beneficial use of waters of the Colorado River System are unimpaired by this compact..." - States of the upper basin would most likely attempt to maximize the amount of precompact consumptive use - A point of contention regarding pre-compact rights is likely to be the quantification of "present perfected use" as of 1922. ### Appropriation Dates vs. Administration Dates - <u>Administration</u> of water rights in Colorado is generally based on <u>adjudication</u> <u>dates</u> (represented by admin numbers in StateMod) - Modeling a Compact Call using <u>appropriation dates</u> yields more pre-compact consumptive use than using administration numbers/dates. # A Closer Look at Pre/Post Compact Depletions | | Average Annual Depletions (acre-feet) | | | | | |-----------|---------------------------------------|-------------|--------------|--|--| | Basin | All Users | Pre-Compact | %Pre-Compact | | | | Yampa | 196,982 | 138,544 | 70% | | | | White | 62,060 | 50,173 | 81% | | | | Colorado | 1,220,386 | 594,169 | 49% | | | | In-Basin | 669,397 | 574,997 | 86% | | | | TMDs | 550,989 | 19,173 | 3% | | | | Gunnison | 552,418 | 495,147 | 90% | | | | Southwest | 500,717 | 322,561 | 64% | | | | Total | 2,532,564 | 1,600,594 | 63% | | | ### Who is Impacted by Curtailment of all Post-Compact Rights? | | Average Annual Depletions (a | | | | |-----------|------------------------------|------------|--|--| | Basin | Post-Compact | % of Total | | | | Yampa | 58,438 | 6.3% | | | | White | 11,887 | 1.3% | | | | Colorado | 626,216 | 67.2% | | | | In-Basin | 94,400 | 10.1% | | | | TMDs | 531,816 | 57.1% | | | | Gunnison | 57,271 | 6.1% | | | | Southwest | 178,157 | 19.1% | | | | Total | 931,969 | 100.0% | | | # What if Curtailment of <u>all</u> Post-Compact Rights is not the only Option? Q: How deep would administrative call be in order to yield a given volume? Assume different target volumes for reduced consumptive use: - 100,000 af - 300,000 af - 600,000 af Recall that a "full" compact call yields about 932,000 af on average | Target Volume
(acre-feet/yr) | All Colorado River
Rights | |---------------------------------|------------------------------| | 100,000 | Jul 1957 | | 300,000 | Sep 1940 | | 600,000 | Aug 1935 | | 932,000 | Nov 1922 | # Impact of a Single State-Wide Partial Call on each Sub-Basin | Target Volume (acre-feet/yr) | Yampa | White | Colorado | In-Basin | TMDs | Gunnison | Southwest | |------------------------------|--------|--------|----------|----------|---------|----------|-----------| | 100,000 | 28% | 3% | 59% | 22% | 37% | 6% | 8% | | (Jul 1957) | 27,627 | 2,753 | 59,124 | 22,309 | 36,815 | 5,925 | 7,528 | | 300,000 | 16% | 2% | 59% | 20% | 39% | 7% | 13% | | (Sep 1940) | 47,987 | 5,325 | 177,976 | 59,918 | 118,058 | 20,862 | 40,233 | | 600,000 | 8% | 1% | 55% | 12% | 44% | 4% | 19% | | (Aug 1935) | 49,679 | 8,478 | 331,556 | 69,452 | 262,105 | 26,163 | 113,862 | | Full | 6% | 1% | 66% | 10% | 56% | 8% | 19% | | Full | 58,440 | 11,888 | 626,171 | 94,403 | 531,834 | 57,273 | 178,163 | ## Impact of a Single State-Wide Partial Call on each Sub-Basin #### What if Curtailment According to a Single State-Wide Priority Date is not the only option? Purpose: Investigate different assumptions regarding the volume and distribution of mandatory curtailment actions *other than* total curtailment. Examples: Agree to reduce consumptive use via a pro-rata basis. What if*: - 1. We distribute the mandatory reductions based on each sub-basin's percentage of post-compact water use relative to the State as a whole? - 2. We distribute the mandatory reductions between in-basin uses and TMDs based on each group's percentage of post-compact water relative to the State as a whole? - 3. The in-basin / TMD split is based only on relative uses in the mainstem Colorado (where the vast majority of TMDs occur)? ^{*}These scenarios should NOT be construed as advocating for a particular approach to Compact administration. The intent is to quantify and better understand a variety of possible options. ### Partial Curtailment - by Sub-Basin Q: How deep would the calls be in each basin to yield these volumes? Assume that each sub-basin is responsible for reducing consumptive use by a volume of water based on the post-compact depletions *in that sub-basin* relative to the State as a whole | Target Volume | Yampa | White | Colorado | In-Basin | TMDs | Gunnison | Southwest | |----------------|--------|--------|----------|----------|---------|----------|-----------| | (acre-feet/yr) | 6.3% | 1.3% | 67.2% | 10.1% | 57.1% | 6.1% | 19.1% | | 100,000 | 6,270 | 1,276 | 67,186 | 10,129 | 57,064 | 6,145 | 19,116 | | 300,000 | 18,811 | 3,827 | 201,557 | 30,387 | 171,191 | 18,436 | 57,348 | | 600,000 | 37,622 | 7,653 | 403,114 | 60,774 | 342,382 | 36,871 | 114,697 | | 932,000 | 58,440 | 11,888 | 626,171 | 94,403 | 531,834 | 57,273 | 178,163 | ### Partial Curtailment - by Sub-Basin Example: If Colorado needed to generate 300,000 af annually, the Yampa basin portion of that volume would be ~18,811 af. To reduce average annual consumptive use in the Yampa by that amount would require calling out all rights junior to <u>August 1962</u> A statewide call to yield 300,000 af requires a <u>September 1940</u> call | Target Volume | Yampa | White | Colorado | In-Basin | TMDs | Gunnison | Southwest | |----------------|--------|--------|----------|----------|---------|----------|-----------| | (acre-feet/yr) | 6.3% | 1.3% | 67.2% | 10.1% | 57.1% | 6.1% | 19.1% | | 100,000 | 6,270 | 1,276 | 67,186 | 10,129 | 57,064 | 6,145 | 19,116 | | 300,000 | 18,811 | 3,827 | 201,557 | 30,387 | 171,191 | 18,436 | 57,348 | | 600,000 | 37,622 | 7,653 | 403,114 | 60,774 | 342,382 | 36,871 | 114,697 | | 932,000 | 58,440 | 11,888 | 626,171 | 94,403 | 531,834 | 57,273 | 178,163 | #### Sub-Basin Distribution For a given target volume, administration dates are developed for each sub-basin | Target Volume | Yampa | White | Colorado | Gunnison | Southwest | |----------------|----------|----------|----------|----------|-----------| | (acre-feet/yr) | 6.3% | 1.3% | 67.2% | 6.1% | 19.1% | | 100,000 | 6,270 | 1,276 | 67,186 | 6,145 | 19,116 | | 100,000 | Jul 1972 | Jul 1962 | Jul 1957 | Nov 1957 | Sep 1940 | | 300,000 | 18,811 | 3,827 | 201,557 | 18,436 | 57,348 | | 300,000 | Aug 1962 | May 1955 | Nov 1935 | Apr 1955 | Sep 1940 | | 600,000 | 37,622 | 7,653 | 403,114 | 36,871 | 114,697 | | 600,000 | Jun 1952 | Jan 1938 | Aug 1935 | Dec 1933 | Nov 1935 | ### Colorado Mainstem In-Basin/TMD Split Splitting the mainstem Colorado into in-basin and TMD users relieves some in-basin administration, but TMD call remains essentially the same: | Target Volume | Colorado <i>In-Basin</i> | | TMDs | | |----------------|--------------------------|----------|----------|--| | (acre-feet/yr) | 67.2% | 10.1% | 57.1% | | | 100,000 | 67,186 | 10,129 | 57,064 | | | 100,000 | Jul 1957 | Jan 1981 | Jul 1957 | | | 300,000 | 201,557 | 30,387 | 171,191 | | | 300,000 | Nov 1935 | Jul 1957 | Aug 1935 | | | 600,000 | 403,114 | 60,774 | 342,382 | | | 600,000 | Aug 1935 | Jul 1941 | Aug 1935 | | ### How would a Call vary across Sub-Basins (Pro-Rata) Compared to a State-Wide Call? ## Comparison of State-Wide vs Sub-Basin Approaches to Curtailment ### Comparison of State-Wide vs Sub-Basin Approaches to Curtailment ## Comparison of State-Wide vs Sub-Basin Approaches to Curtailment - 1. Of Colorado's ~2.5 Maf of average annual consumptive use, approximately ~1.6 Maf is attributable to Pre-Compact rights, and ~900 Kaf is Post-Compact - 2. TMDs constitute over half of the Post-Compact depletions (~56%) - 3. Because of #2, the Colorado Mainstem users comprise 2/3 of all Post-Compact uses - 4. The large TMDs often end up being the swing call, even across different volumetric reductions - 5. Allocating deficit volumes pro-rata by sub-basin depletions results in substantially different administration dates for certain sub-basins when compared to a state-wide curtailment of all Colorado River water users.